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Abstract

We present a discussion of kinetic theory treatments of linear electrical and thermal transport

in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order

to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu

theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body

quantum statistical potentials and compute both electrical and thermal conductivity from our

particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing

the identical statistical potentials agree well with the simulations. Comparison between quantum

Lenard-Balescu and classical Lenard-Balescu for conductivities then allows us to both validate and

critique the use of various statistical potentials for the prediction of plasma transport properties.

These findings complement our earlier MD/kinetic theory work on temperature equilibration [1],

and reach similar conclusions as to which forms of statistical potentials best reproduce true quantum

behavior.
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I. INTRODUCTION

There is now a heightened interest in the transport properties of dense plasmas, owing to

work in support of inertial confinement fusion (ICF) research at the National Ignition Facility

[2]. Of particular interest is the thermal conductivity of both the DT (deuterium-tritium)

fuel and the ablator material (typically comprised of low-Z elements like C, H, and Be).

This is because large temperature gradients are predicted to be present in the neighborhood

of certain interfaces separating material regions with markedly different densities, and the

precise magnitudes of ∇T in these regions are therefore thought to have a large effect

on the development of (unwanted) fluid instabilities [3]. Existing models for the thermal

conductivities of the constituent materials exist for exactly these purposes [4–6], but they

are based on a combination of ad hoc hypotheses and empirical fits to experimental data

taken in regimes often quite far from those visited in ICF [7, 8].

Recently, there has been a spate of ab initio calculations of the electrical and thermal

conductivities of dense plasmas in the precise regime of interest [9–12]. However, these

approaches suffer from serious difficulties as T is increased into the keV realm due to the

large number of high-energy states which much be included. The primary advantages of these

density functional theory (DFT)-based approaches are three-fold: 1. The quantum nature

of the electron-ion scattering is treated naturally, without the need to apply cut-offs as in

the Coulomb-logarithm paradigm [13, 14], described below. 2. The artificial distinction of

bound vs. free electrons is eliminated, allowing a plasma with a distribution of charge states

to be described in a self-consistent, realistic manner. 3. Electron degeneracy is accounted

for, enabling a proper description of the dense cold fuel in an ICF implosion scenario.

In this article, we employ an altogether different simulation approach, that of classical

molecular dynamics (MD) with quantum statistical potentials (QSPs), which treats the

quantum Coulomb scattering problem in an approximate way. This approach has been used

extensively to model the static properties of dense plasmas [15–19], as well as certain dy-

namical properties such as temperature equilibration [17, 20, 21]. QSP-MD is free from the

disadvantage of having to sum over numerous partially-occupied states as in the DFT-MD

treatment of conductivities. We use QSP-MD to compute electrical and thermal conduc-

tivities of dense but non-degenerate hydrogen plasmas. These conductivities are computed

in equilibrium simulations using the Kubo fluctuation-dissipation methodology [22]. Be-
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cause different choices for QSPs exist, none of which were designed specifically to compute

dynamical quantities like conductivities, we compare our results to those of the state-of-the-

art plasma kinetic treatment: Lenard-Balescu theory [23], in which plasma screening enters

through a multi-component dynamical dielectric function. By evaluating conductivities us-

ing both quantum and classical variants of Lenard-Balescu theory, we address the question:

How well do we expect QSP-MD to do in predicting plasma transport in hydrogen, at least

in the weak-coupling limit where kinetic theory can be trusted? This same strategy has

been used to study the efficacy of QSP-MD for the simulation of electron-ion temperature

equilibration [1]. In what follows, we review the history of plasma theories describing trans-

port in our regime of interest (II A), present our scheme for making predictions to compare

to our QSP-MD results (II B), describe our MD simulations (III), and discuss our findings

(IV).

II. THEORY

We begin by reviewing the theory of linear transport in plasmas, specifically those kinetic

theory treatments which have been developed to handle the regimes of interest to ICF

(ρ ∼ 0.1− 1000 g/cc, T up to a few keV). In particular, we focus on kinetic theories aimed

at addressing the weak-coupling limit, since these theories (beginning with that of Ref.[13])

have played an important role in the development of models in wide use for ICF and related

applications. At the end of this section, we outline our basic strategy for solving the Lenard-

Balescu equation in the perturbative manner needed for the prediction of linear transport,

leaving many of the details for a subsequent manuscript [12].

A. General considerations

We focus on the contribution of the electrons to the conductivities, since they are thought

to be the dominant contributors, given the large mass ratio, mproton/melectron. Assuming

linear response to external perturbations, the charge (jZ) and heat (jQ) currents are related

to the electric field and temperature gradient by [24]:

jZ = −1

e

(
−eLZZE +

LZQ∇T
T

)
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jQ = −1

e

(
−eLQZE +

LQQ∇T
T

)
. (1)

The electrical (σ) and thermal (Kth) conductivities are related to the Onsager coefficients,

Lab [24]:

σ = LZZ , (2)

and

Kth =
1

T

(
LQQ −

L2
ZQ

LZZ

)
. (3)

The determination of σ and Kth then follows from the calculation of the currents jZ and

jQ in the presence of the driving forces, E and ∇T . In a kinetic theory treatment, these

currents are computed from the perturbed electron distribution function.

For simplicity, we describe kinetic theories which govern the evolution of a phase space

distribution function, f(r,v, t). This is only strictly meaningful for classical particles, since

both r and v are simultaneously specified, but a straightforward generalization to the quan-

tum case is possible using the Wigner distribution function [25]. The kinetic equation obeyed

for the electron distribution function is:

∂f

∂t
+

F

m
· ∇vf + v · ∇rf = C[f ], (4)

where F denotes an external force on the electrons and C[f ] is the collision operator, equal

to the total time derivative of f and discussed at length below. For steady-state problems,

such as those of electrical and thermal conductivity, the first term on the LHS is zero. To

study the electrical conductivity of a homogeneous (on average) plasma, we set the third

term on the LHS to zero as well, and set F = −eE in the second term. The resulting

equation, (−eE/m) · ∇vf = C[f ], describes the steady-state electron distribution, f , in the

presence of an electric field, E. What remains is to specify a collision term. Once this is done

and the resulting equation is solved, the DC electrical conductivity, σ, is given by Ohm’s

Law: jZ = σE, for a constant field E. The electrical current density is simply

jZ =

∫
d3vvf(v). (5)

For the BGK collision term (relaxation time approximation) [26], C[f ] = (f0 − f)/τ , one

obtains the familiar σ = ne2τ/m [27], where f0 is the equilibrium (e.g. Maxwellian) distri-

bution, n =
∫
d3vf is the number density of electrons, and τ is a mean collision time [4]. It

is important to note that the equilibrium distribution, f0, gives rise to jZ = 0, since f0(v)
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is spherically symmetric. Thus, it is the non-spherical part of the steady-state solution to

Eq.4 which contributes to the conductivity.

The thermal conductivity problem is a bit more subtle for three reasons: 1. The energy

current involves contributions from potential energy in addition to the kinetic piece which

depends only on v. 2. Depending on the assumptions made, both the second and the third

terms on the LHS of Eq.4 can be nonzero, since gradients in temperature naturally give rise

to gradients in electron density which in turn result in electric fields. 3. It is necessary to

assume an equation of state which relates pressure, density, and temperature. Regarding

the first point, we focus our kinetic theory predictions on hydrogen plasmas at sufficiently

weak coupling that we can neglect the potential energy contributions to the energy current;

as such, we take the energy current to be jQ =
∫
d3v 1

2
mv2vf(v). Regarding point 3, it can

be shown that the thermal conductivity we seek, Kth, can be computed either at constant

electron density or at constant pressure, giving identical results [28], as long as the ideal gas

assumption is made, P = kBT/V . This is in turn consistent with the assumption of weak

plasma coupling.

The simplest treatment of collisions in a kinetic theory framework is the binary collision

approximation, in which the total collision term is represented as the sum of independent 2-

body scattering events. This picture, while attractive for developing a basic understanding,

fails to address the most subtle aspect of plasma transport: the effect of screening on

Coulomb collisions. Indeed, the very determination of the scattering time for a system of

particles interacting via long-ranged Coulomb forces is a difficult one, requiring the concept of

screening to mitigate the divergences which otherwise arise when the Coulomb cross-section

is summed appropriately over impact parameter to produce C[f ]. This famous problem

was first addressed by Landau in 1936 [14] in the context of temperature equilibration in

a 2-temperature classical Coulombic system. His solution made use of the realization that

the dominant contribution to the energy exchange rate between two species of Coulombic

particles is due to the many small-angle collisions with large impact parameters, but that

once the impact parameter exceeds the screening length, the contribution drops to zero.

This line of thinking produced a scattering time proportional to the reciprocal of the so-

called Coulomb logarithm: lnλ ≡ ln(bmax/bmin), where bmax is taken to be a (static) Debye

screening length, and bmin is a distance of closest approach (also termed the Landau length

for a classical plasma). In the quantum fusion-burning plasmas which are our primary
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interest here, it is more appropriate to set bmin = λdB, the thermal de Broglie wave length,

as discussed in numerous previous works [4–6, 23]. The identification bmin = λdB reflects the

fact that electron wave packets with a spatial extent ∼ λdB scatter through smaller angles

than point-like electrons undergoing Kepler orbits [29].

Though this strategy of regularizing the logarithmic divergences appearing in Coulomb

scattering calculations by imposing cutoffs is intuitively appealing, its limitations are severe.

There are at least two reasons for this: 1. It manifestly only addresses weak plasma coupling,

where small-angle collisions are dominant. 2. It invokes a notion of static screening in the

identification of its bmax; for each effective 2-body collision, it is necessary to identify those

particles in the background plasma which are assumed to respond instantaneously to screen

the inter-particle interaction in question, neglecting all others. For many real plasmas, these

idealizations are inappropriate, however for the bulk of the hydrogen plasmas in this study,

they provide a very reasonable starting-point.

There are two general families of (both quantum and classical) kinetic theories for plasma

transport: Those which make use of ad hoc cutoffs in their representation of the logarithmic

factors (lnλ) which contribute to the scattering cross sections, and those which do not.

Those invoking Coulomb-logs with cutoffs include the pioneering work of Spitzer and Härm

[13], and Cohen, Spitzer, and Routly [30]. By extension, this set also includes the efforts

which focus on constructing wide-ranging analytic models for plasma transport for fusion

and related applications: Lee-More [4], Rinker [5], and Lee-More-Desjarlais [6], since a lnλ-

based description is entirely natural in the context of analytic expressions for both σ and

Kth. The theories not making use of truncated Coulomb-logs are those which take into

account plasma screening explicitly, and therefore compute the collision term without the

need for ad hoc (though physically motivated) cutoffs. There are two main variants of these:

a. approaches based on the Ziman resistivity formula [31–33], in which 1/τ is computed due

to electron waves scattering off a collection of fixed ions dressed by background electrons,

and b. Lenard-Balescu [23] approaches, where the integrand of C[f ] involves factors such as

φ(q)/ε(q, ω(q)), where φ(q) is the Fourier transform of the inter-particle interaction and ε is

the wave vector-dependent and frequency-dependent dielectric function in the random phase

approximation (RPA). Inclusion of ε in C[f ] regularizes the problem so that the cutoff, bmax,

in the Coulomb-logs is unnecessary. In both approaches, the disordered potential produced

by the ions and felt by the electrons enters through an ion structure factor, Sii.
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Accompanying the details of the Coulomb collision physics, there is an associated effect

which pertains to the shape in v-space of the steady-state electron distribution function,

f(v). As we noted above, the spherically-symmetric equilibrium distribution, f0, contributes

nothing to the (charge or energy) current, so the precise a-sphericity is therefore responsible

for the magnitudes of σ and Kth. This shape is the result of an interplay between the

tendency for the electron-electron and electron-ion scatterings to make the distribution more

isotropic, and the opposing tendency for the spatial gradients (due either to E or to ∇rT ) to

cause it to elongate along a given direction. This reshaping of f can be studied by expanding

f in orthogonal polynomials in the solution of Eq.4, as discussed in Refs.[28] and [13] for

instance. For the case of nearly degenerate electrons, it turns out that a single polynomial

suffices for σ, resulting in a solution which takes on a particularly simple form: the shifted

distribution assumption [27], f(v) = f0(v − [jZ/ne]). For more general cases, the solution

depends in a subtle way on the relative importance of electron-ion and electron-electron

collisions, as discussed in Braginskii [34]. The degree of sophistication of this aspect of the

treatment is independent of whether or not truncated Coulomb-logarithm assumptions are

invoked. Spitzer-Härm [13] includes this effect in detail for both σ and Kth, while the Ziman

formula theories [32, 33] make the shifted-distribution approximation, thereby requiring

multiplicative corrections (so-called ”Lorenz gas corrections”) to yield comparable results

in this sense. Such corrections can be derived by taking the ratio of the infinite-polynomial

result to the appropriate few-polynomial result, and are known to be more important for

low-Z plasmas at high-T [34, 35].

In Spitzer-Härm [13] and Cohen-Spitzer-Routly [30], σ and Kth for a classical Coulomb

plasma are predicted using what amounts to a Fokker-Planck equation addressing small-

angle scattering (and therefore weak plasma coupling). The effect of the reshaping of f(v)

due to the electron-electron interaction is included. Coulomb-logs, lnλee and lnλei, are

assumed in which bmax= a static Debye screening length, and bmin= the classical distance

of closest approach, Ze2/(kBT ) for electron-ion [13]. These works still form the basis for

what is currently understood about linear transport in a classical weakly-coupled system of

particles interacting via the Coulomb interaction. It is reasonable to assume that analogous

results for the quantum plasma can be obtained by simply replacing bmin = Ze2/(kBT )

by bmin = λdB. The theory of Williams and DeWitt [36] addresses small-angle scattering

in a quantum-Coulomb plasma with a Lenard-Balescu scheme [23]. Here, the inclusion
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of the 2-component homogeneous plasma dielectric function eliminates the need for the

bmax of the Coulomb logarithm, while a proper accounting of quantum diffraction through

the 2-body cross sections and the quantum density-density response eliminates the need

for a bmin. The full reshaping of f is included through a polynomial expansion. What is

not included is the full antisymmetry of the many-electron wave function; rather, Pauli

exclusion is accounted for only at the 2-body level, pertaining to the binary scattering

of two electrons. In this sense, the global particle statistics must be Maxwellian, as is

approximately the case for fusion-burning hydrogen, for example. This theory, together

with later applications of it [37] constitute much of what is known about linear transport

in hot (i.e., non-degenerate), weakly-coupled hydrogen plasmas. A theory addressing the

full range of electron degeneracy is that of Ichimaru and Tanaka [38], in which a simplified

version of the Lenard-Balescu prescription is derived which makes an explicit connection to

forms culled from the Ziman resistivity formula [31]. This result, however, does not include

a full treatment of the reshaping of the electron distribution function, and therefore is only

strictly applicable at low-T , absent additional multiplicative corrections. Further work using

the Ziman formula and approximate forms for the effective electron-ion potential and the ion

structure factor have been used to predict transport in (partially ionized) high-Z plasmas

[32, 33]. These also require reshaping corrections at high-T .

In what follows, we sketch our scheme for solving the Lenard-Balescu equation for a two-

component plasma. Though, like Williams and DeWitt [36], we confine our interest to cases

in which the unperturbed plasma particles obey Maxwellian statistics, we construct two

such schemes: 1. Classical-LB and 2. Quantum-LB. In classical-LB, the classical dielectric

response is assumed and the inter-particle interactions are taken to be QSPs, regularized

around r = 0; this allows us to model our classical QSP-MD. In quantum-LB, we use the

quantum dielectric response and the pure Coulomb inter-particle interactions; this is simply

our version of Williams and DeWitt [36, 39] and Morales et al. [37], aimed at checking their

findings and applying their approaches to the cases of our specific interest. Comparisons

between classical-LB and QSP-MD predictions of σ and Kth will show that detailed features

in the MD are represented extremely well by the theory. Comparisons between classical-

LB and quantum-LB then allow us to determine, for these hydrogen plasmas, the optimal

classical-QSP scheme for representing transport in quantum hydrogen.
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B. Our Lenard-Balescu Approach

Considering first the quantum-Coulomb plasma, we seek the static solution to Eq.4 for

the electron distribution, fe,

v · ∂
∂r
fe(r,v) +

F

me

· ∂
∂v

fe(r,v) = C
(ee)
QLB(fe) + C

(ep)
QLB(fe) , (6)

where CQLB(f) is the quantum Lenard-Balescu collision operator, although it was first

derived by Wyld and Pines [40]. For electron-electron scattering the operator is

C
(ee)
QLB(fe) = − 1

4π2~2

∫
d3v′

∫
d3q

|φee(q)|2∣∣∣ε(q,q · v + ~q2
2me

)∣∣∣2
× δ[q · (v − v′) + ~q2/me][fe(v)fe(v

′)− fe(v + ~q/me)fe(v
′ − ~q/me)] . (7)

Since we are considering plasmas which are approaching the fusion-burning regime, we ne-

glect the additional terms for C
(ee)
QLB which involve the Pauli blocking factors, 1−fe [41]. This

is additionally appropriate because our primary motivation is to compare LB and classical

MD. Within this same framework, the electron-proton collision term is

C
(ep)
QLB(fe) = − 1

4π2~2

∫
d3v′

∫
d3q

|φep(q)|2∣∣∣ε(q,q · v + ~q2
2me

)∣∣∣2
× δ[q · (v − v′) + ~q2/2µ][fe(v)fp(v

′)− fe(v + ~q/me)fp(v
′ − ~q/mp)] , (8)

where µ = memp/(me + mp) is the reduced mass. For the dielectric function appearing in

these collision terms, we use the random phase approximation for two components [25]

ε(q, ω) = [1− φee(q)χe(q, ω)][1− φpp(q)χp(q, ω)]− φep(q)2χe(q, ω)χp(q, ω) , (9)

where χσ(q, ω) is the free-particle density-density response function for species σ and φσσ′(q)

is the Fourier transform of the σ-σ′ interaction. These response functions are given by

χσ(q, ω) =

∫
d3v

f
(0)
σ (v)− f (0)

σ (v + ~q/mσ)

~ω − ~v · q− ~2q2
2mσ

+ iη
, (10)

where η is a positive infinitesimal.

We construct perturbative solutions to Eq.6 to lowest order in E and ∇T :

fe(r,v) = f (0)
e (r,v) + f (1)

e (v), (11)
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where the unperturbed state is a spatially-dependent Maxwellian with a temperature gra-

dient,

f (0)
e (r,v) = ne

(
meβ(r)

2π

)3/2

e−meβ(r)v
2/2, (12)

and f
(1)
e is linear in E and ∇T . The perturbation, f

(1)
e , is then expanded in associated

Laguerre (Sonin) polynomials [28, 36, 37, 42, 43]. The conductivities, σ and Kth, are then

related to the non-spherical parts of fe. The determination of f
(1)
e is considerably involved,

particularly in the case of Kth. Thus, we do not reproduce our lengthy expressions here, but

exhibit them instead in an upcoming manuscript [12].

For the classical plasma, we take the ~ −→ 0 limit of our expressions for the quantum

case and (given our interest here in making comparisons with our MD simulations) replace

the bare Coulomb interactions of φee and φep by the appropriate QSPs; in some cases,

to be discussed in Section III, φee includes both a diffractive piece and a 2-body Pauli

term [51]. The essential differences between classical and quantum-LB results from the

quantum vs. classical versions of Eqs.7,8,10: In the quantum case, the short-distance (large-

q) logarithmic divergences are eliminated by the effect of quantum diffraction at large q,

while for the classical case, the divergence is eliminated instead by the large-q behavior of

the QSPs entering φee and φei. This is in direct correspondence to our previous quantum-

Coulomb vs. classical-QSP LB calculations of temperature equilibration [1]. We note that

our quantum-Coulomb LB calculations are essentially identical to those of Williams and

DeWitt [36], though without the Boltzmann operator scattering term that they use to treat

hard collisions in more strongly-coupled plasmas.

Because the quantum-LB approach we employ here includes in a natural way the effects

of quantum diffraction and uses Coulomb interactions (rather than QSPs) for φee and φei, it

is expected to give correct predictions as long as: 1. the electrons are non-degenerate, and

2. the plasma is sufficiently weakly-coupled for small-angle scattering to dominate [29].

III. SIMULATION METHOD

We use classical MD with QSPs to simulate hydrogen in various conditions of temperature

and density in which the electrons are essentially non-degenerate. Since the main focus of this

work, however, is to perform comparisons between MD and Lenard-Balescu (LB) calculations

for linear transport, slight incursions into partially degenerate regimes are to be tolerated;
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as long as we are comparing classical MD to classical-LB, both with the same assumed

inter-particle interactions, the comparison is meaningful. We note that in contrast to our

LB treatment, the MD scheme we employ below includes the (however small) contributions

from the ions to the conductivities as well, since we perform simulations in which both species

are treated dynamically, rather than averaging over snapshots of fixed ionic configurations.

We use the relations given above as Eqs.1, 2, and 3, to define σ and Kth and their

dependences on the Onsager coefficients, LZZ , LQZ , and LQQ. We compute these Onsager

coefficients from current-current correlation functions by appealing to the Kubo relations

[22]:

LZZ =
1

3kBV T

∫ ∞
0

〈jZ(t) · jZ(0)〉dt,

LQZ =
1

3kBV T 2

∫ ∞
0

〈jQ(t) · jZ(0)〉dt,

LQQ =
1

3kBV T 2

∫ ∞
0

〈jQ(t) · jQ(0)〉dt, (13)

where V is the volume of the system, and T is the temperature.

The computation of the correlation functions in Eqs.13 is quite challenging, as has been

discussed by other authors [44–47] and by us in an upcoming manuscript [12]. This is

because the long-time behavior requires a long MD simulation which is difficult to perform

with sufficient accuracy when small MD time-steps are required. In addition, we find that

for system sizes of between 104 and 105 particles, the computed conductivities vary by 20%

for σ and by 30% for Kth for statistically independent initial configurations. For the energy

current, jQ, we take into account both the kinetic energy piece (∝
∑

particles
1
2
mv2v), and the

potential energy piece possessing virial terms which we evaluate using the Ewald method

of Galamba et al. [48]. In this sense, our MD description is capable of handling strong

coupling, in contrast to the Lenard-Balescu approach we use and discuss above for which jQ

includes only the kinetic piece. However, we will see below that for the fairly weakly-coupled

systems we consider here, reasonable quantitative agreement between our LB and MD results

is obtained. The forces and potential energies needed for our MD computations of σ and

Kth are evaluated with the aid of the particle-particle, particle-mesh method [49, 50].

Prior to accumulating MD data used to compute the conductivities, we initialize our

systems by assigning random particle positions with the particle velocities sampled from a

Maxwellian at the chosen T . Equilibration is affected by initially setting mproton = melectron
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and equilibrating with a Langevin thermostat [49], after which mproton is rescaled to its

physical value and the proton velocities are rescaled so as to preserve the total kinetic energy.

The thermostat is then turned off and the system is allowed to evolve micro-canonically

while the correlation functions of Eqs.13 are computed. The MD time-steps are chosen to

converge the total energy to within 0.001 eV/fs per particle, which yields time-steps in the

neighborhood of 10−5 fs. Charge and energy currents are evaluated roughly every 10 MD

time-steps.

As mentioned variously above, we use QSPs for all of our MD studies reported here. In

such classical inter-particle potentials, the effects of quantum diffraction are accounted for

approximately by applying corrections which soften the otherwise Coulombic interactions

within a range given by the thermal de Broglie wave lengths (the φpp interaction is essen-

tially purely Coulombic here, since we consider temperatures for which the proton de Broglie

length is much smaller than the proton-proton classical distance of closest approach). We

consider two types of diffractive QSPs, each derived by requiring that various static proper-

ties of quantum hydrogen at elevated temperature are reproduced in classical simulations:

Dunn-Broyles [16] and modified-Kelbg [15, 18, 19]. We choose to perform the bulk of our

simulations with Dunn-Broyles because it is in relatively wide use; its form is

U(rij, β) =
qiqj
rij

[
1− e−

rijπ

λij

]
, (14)

where λij = ~/
√

2µijkBT and µij is the reduced mass for particles of type i and j. The

Kelbg diffractive term also involves λij [15],

U(rij, β) =
qiqj
rij

[
1− e

−
(
rij
λij

)2]
+
√
π
qiqj
λij

[
1− erf

(
rij
λij

)]
. (15)

In addition, we also explore the use of a correction to φee to account for Fermi statistics.

This so-called Pauli term is the one employed by Deutsch, Minoo, and Gombert [51]

Uee(rij, β) = β−1ln(2) exp
(
−[πln(2)]−1r2/Λ2

H ]
)
, (16)

where ΛH = ~/
√
πmeT . We will see below that the effect of this term is exceedingly

large especially for Kth, and that comparisons to various quantum Lenard-Balescu theory

results suggest that its use for thermal transport should probably be avoided particularly in

weak-coupling. However, for static quantities like total energies and static structure factors,
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inclusion of this term does indeed produce improvements when comparing to path integral

Monte Carlo simulations [17]. Other effective 2-body Pauli terms constructed with different

philosophies exist [52, 53], but are essentially almost indistinguishable with that of Eq.16

for the conditions of our interest.

IV. DISCUSSION OF RESULTS: COMPARISONS BETWEEN THEORY AND

SIMULATION

Our QSP-MD calculations of σ and Kth for hydrogen involve simulations with 10,000

particles (5000 electrons + 5000 protons) in a periodic cell with a size appropriate for the

chosen density using the massively-parallel ddcmd code [17, 54]. Table I displays results

obtained with QSPs of the Dunn-Broyles form for the diffractive piece + the 2-body Pauli

term as introduced in Ref.[51]. Note that for fixed density, σ and Kth increase as T increases,

as predicted for non-degenerate electrons by various theories [13, 30, 36–38]. Table II shows

a smaller set of results with ρ = 40 g/cc, from QSP-MD using the Dunn-Broyles diffractive

term and without the addition of the Pauli potential. We see that while σ is increased slightly

if the Pauli term is discarded, Kth is increased substantially. The Pauli term adds an extra

repulsion which further reduces the electronic (charge and energy) current. The fact that

this reduction is larger for Kth than for σ is to be expected: Two-body electron-electron

scattering alone does nothing to alter the electrical current, since jZ is proportional to the

total electron momentum, which is conserved. This does not apply to the energy current,

since jQ ∝ v3. In an upcoming manuscript [12], we show that much of this large dependence

of Kth on the Pauli term can be understood by analyzing the partial-wave decomposition of

the relevant scattering cross section. Our comparison (below) to quantum-Coulomb LB will

suggest that the inclusion of a 2-body Pauli term for hydrogen conductivities in this regime

is in fact suspect.

These QSP-MD results for σ and Kth are largely reproduced in our classical-QSP LB

calculations. Figure 1 shows σ vs. T for hydrogen as computed by QSP-MD (symbols)

and classical-LB (lines; identical colors) with the identical QSPs and the scheme outlined in

Section II B. The open symbols indicate the results for individual MD replicas, while the

corresponding filled symbols at the same T show their arithmetic averages, reproduced in

Tables I and II. The solid brown curve shows the conductivity as computed by the Purgatorio
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Density (g/cc) Temperature (eV) σ (Ohm m)−1 Kth (W/(K m)

2.66 27 1.20e7 2.21e4

2.66 54 1.46e7 4.9e4

10.0 86 4.00e7 3.0e5

10.0 172 5.00e7 5.0e5

40.0 500 1.725e8 3.8e6

40.0 700 2.025e8 8.8e6

40.0 900 2.50e8 1.1e7

TABLE I: QSP-MD results for electrical and thermal conductivities of hydrogen plasmas at various

conditions. Here, the QSPs used are Dunn-Broyles [16] for the diffractive piece and the prescrip-

tion of Ref.[51] for the Pauli term. Each value represents an average over multiple statistically

independent replicas.

Density (g/cc) Temperature (eV) σ (Ohm m)−1 Kth (W/(K m)

40.0 500 2.05e8 1.0025e7

40.0 700 2.564e8 2.50e7

40.0 900 3.227e8 3.363e7

TABLE II: QSP-MD results for electrical and thermal conductivities of hydrogen plasmas at various

conditions. Here, the QSPs used are Dunn-Broyles [16] for the diffractive piece and no Pauli term.

Each value represents an average over multiple statistically independent replicas.

model [32] which we alluded to in Section II A. The differences between Dunn-Broyles +

Pauli (magenta) and Dunn-Broyles without Pauli (cyan) are strikingly similar in both LB

and MD, and the absolute magnitudes, simulation vs. theory, are also quite close. This is

also seen in the analogous comparison for Kth (see Fig.2) where the Pauli/no-Pauli difference

is considerably larger. In addition, we also present classical-QSP LB results for cases in which

the diffractive terms in φee and φep are chosen to be of the Kelbg form [15] (solid black line

for Kelbg + Pauli; dashed black line for Kelbg + no Pauli). These produce somewhat lower

conductivities than those using Dunn-Broyles. The general agreement between simulation

and theory for the Dunn-Broyles cases shows that for these plasma conditions (and for
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FIG. 1: Electrical conductivities of hydrogen plasmas with ρ = 40 g/cc. Magenta symbols (curve)

are QSP-MD (classical-LB) with the Dunn-Broyles diffractive term + the Pauli correction; cyan

symbols (curve) are QSP-MD (classical-LB) with Dunn-Broyles and no Pauli term. The open

symbols showing a range of values for each T indicate the results for individual MD replicas.

The dot-dashed black curve is classical-LB with the modified-Kelbg [15] diffractive term + Pauli;

solid black curve is classical-LB with modified-Kelbg and no Pauli term. The dark blue curve is

quantum Lenard-Balescu using the bare Coulomb interaction; dotted blue curve is the result of the

quantum-Coulomb LB approach of Williams and DeWitt [36] without their exchange correction.

The solid brown curve shows the Purgatorio (DFT average-atom-in-jellium) [32] result.

the QSPs used), the small-angle scattering and linear screening assumptions inherent in

Lenard-Balescu theory are generally satisfied. It is then natural to ask: a. How well does

this classical-QSP hydrogen represent true quantum hydrogen? b. Which choice of QSPs

is expected to be best for modeling electrical and thermal transport in nature’s quantum

hydrogen plasma?

We address these questions by comparing to our quantum-Coulomb LB results for hy-
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FIG. 2: Thermal conductivities of hydrogen plasmas with ρ = 40 g/cc. Magenta symbols (curve)

are QSP-MD (classical-LB) with the Dunn-Broyles diffractive term + the Pauli correction; cyan

symbols (curve) are QSP-MD (classical-LB) with Dunn-Broyles and no Pauli term. The open

symbols showing a range of values for each T indicate the results for individual MD replicas.

The dot-dashed black curve is classical-LB with the modified-Kelbg [15] diffractive term + Pauli;

solid black curve is classical-LB with modified-Kelbg and no Pauli term. The dark blue curve is

quantum Lenard-Balescu using the bare Coulomb interaction; dotted blue curve is the result of the

quantum-Coulomb LB approach of Williams and DeWitt [36] without their exchange correction.

The solid brown curve shows the Purgatorio (DFT average-atom-in-jellium) [32] result.

drogen in the same conditions, shown as the blue solid lines in Figs.1 and 2. These curves

are very similar to those generated by our evaluation of the theory of Williams and DeWitt

[36] for these conditions (dotted blue lines), though our quantum-LB lacks both the hard-

scattering (Boltzmann) term and the correction to the Coulomb scattering cross section from

2-body exchange [39, 55]. Comparisons between our classical and quantum Lenard-Balescu

results indicate that the best agreement is obtained when: 1. The diffractive pieces of the
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QSPs are chosen to be of the Kelbg form [15], rather than Dunn-Broyles, and 2. The 2-body

Pauli term for electron-electron is set to zero. We note that our prior work supports the

first conclusion: in Ref.[1], we demonstrated that the use of the Kelbg diffractive potential

in a classical MD calculation is the nearly optimal choice for reproducing energy exchange

rates for quantum weakly-coupled 2-T hydrogen plasmas. Since energy exchange is closely

related to resistive heating, it can also be motivated using both classical and quantum vari-

ants of the theory of Ichimaru and Tanaka [38] that the Kelbg diffractive form should be

the optimal choice for σ and Kth as well. The second conclusion is consistent with the

findings of earlier studies [46, 56]; a detailed discussion of the unphysically large effect of

the Pauli term on Kth at high T appears in an upcoming work [12]. As a final illustration

of these points, we note that our classical LB results for this same density represented in

Figs.1 and 2 (ρ = 40 g/cc), but at the much higher temperature of 10,000 eV, show the ratio

Kth(Kelbg, no Pauli)/Kth(Kelbg + Pauli) to be 8.22, while σ(Kelbg, no Pauli)/σ(Kelbg +

Pauli) = 1.74. The effect of the Pauli term therefore remains especially large for Kth even

at exceedingly weak coupling, and we find that the Kelbg-without-Pauli Kth is considerably

closer to the quantum-LB result than are Kelbg + Pauli or Dunn-Broyles + Pauli.

V. CONCLUSIONS

We discussed the development of kinetic theories for the prediction of electrical and

thermal conductivities of dense plasmas, and have applied a particular variant, Lenard-

Balescu theory, to hydrogen plasmas with 2 g/cc < ρ < 40 g/cc and 20 eV < T < 900 eV. In

addition, we presented equilibrium classical MD simulations of the same quantities in which

various combinations of 2-body quantum statistical potentials were used to model quantum

diffraction in the Coulomb scattering processes. Evaluation of Kth using both quantum-

Coulomb and classical-QSP Lenard Balescu theory allowed us to conclude that the Kelbg

diffractive piece is likely better to use than the Dunn-Broyles equivalent, and that the use of

a correction to φee to handle the effects of partial degeneracy has a large effect which pushes

the thermal conductivity away from the best available quantum kinetic theory predictions

at weak coupling.

We are now in a position to compare both types of calculations to DFT-MD predictions

of σ and Kth for hydrogen plasmas. Further details along these lines are forthcoming [12]. In
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addition, the MD component of this work should inform future studies of thermal transport

in situations where ∇T is large enough to preclude the possibility of appealing to the linear

response paradigm. Such situations are indeed thought to be of importance in ICF [2].

VI. ACKNOWLEDGEMENTS

We thank J.C. Weisheit, W.H. Cabot, L.G. Stanton, R. Redmer, M.S. Murillo, P.E.

Grabsowski, and M. Bonitz for helpful discussions. H.D. Whitley is grateful to the DOE

for support provided through a PCASE Award. This work was performed under the auspices

of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract

No. DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and

Development Program at LLNL under tracking code No. 12-SI-005.

18



[1] L.X. Benedict et al., Phys. Rev. E 86, 046406 (2012).

[2] D.S. Clark, S.W. Haan, B.A. Hammel, J.D. Salmonson, D.A. Callahan, R.P.J. Town, Phys.

Plasmas, 17, 052703 (2010); S.W. Haan, J.D. Lindl, D.A. Callahan et al., Phys. Plasmas, 18,

051001 (2011).

[3] B.A. Hammel et al., High Ener. Dens. Phys. (2010), doi:10.1016/j.hedp.2009.12.005.

[4] Y.T. Lee and R.M. More, Phys. Fluids 27, 1273 (1984).

[5] G.A. Rinker, Phys. Rev. A 37, 1284 (1988).

[6] M.P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).

[7] A.W. DeSilva and J.D. Katsouros, Phys. Rev. E 57, 5945 (1986).

[8] J.F. Benage, W.R. Shanahan, and M.S. Murillo, Phys. Rev. Lett. 83, 2953 (1999); J.F. Benage,

Phys. Plasmas 7, 2040 (2000).

[9] F. Lambert, V. Recoules, A. Decoster, J. Cleriouin, and M.P. Desjarlais, Phys. Plasmas 18,

056306 (2011).

[10] D.E. Hansen, L.A. Collins, J.D. Kress, and M.P. Desjarlais, Phys. Plasmas 18, 082704 (2011).

[11] B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120 (2011).

[12] M.P. Desjarlais, C.R. Scullard, H.D. Whitley, J.I. Castor, J.C. Weisheit, L.X. Benedict, A.

Peters, J.N. Glosli, D.F. Richards, M.S. Murillo, and F.R. Graziani, unpublished (2014).
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